Elliptic curves and the BSD conjecture

1. Motivation

- Geometry: rational parametrization
- Cavern an affine plane curve $C=f(x, y) / \mathbb{C}$, does it possess a rational parametrization?
- \exists ? rational functions $x(t), y(t)$ sit.
(0.) for almost all $t \in \mathbb{C} \quad f(x(t), y(t))=0$
(2.) for almost all $P \in C$ 子 $t \in \mathbb{C}$ sit. $P=(x(t), y(t))$
- Examples:
(1) degree 1: $y=a x+b \Rightarrow(x, y)=(t, a t+b)$
(2) degree 2: $y=x^{2} \Rightarrow(x, y)=\left(t, t^{2}\right)$
(3) degree 3: $y^{2}=x^{2}(x+1) \Rightarrow(x, y)=\left(t^{2}-1, t^{3}-t\right)$

$$
y^{2}=x^{3}-x \Rightarrow \text { impossible }
$$

- Theorem: An irreducible affine curve C is rational if and only if it's birationally equivalent to the affine line $\mid \mathbb{A}^{\prime} \Leftrightarrow$ genus $(c)=0$
- Takeaway: Genus 1 curves are the first example of non-rational curves

D Number Theory: Hesse principle

- Given an affine plane curve $C=f(x, y) / Q$, does it possess a \mathbb{Q}-rational point?
- If so, the under the natural embedding oo $Q \subset$ has point defined over \mathbb{R} and $\mathbb{R}_{p} \forall p$ (global-to-local)
- Easy to cher for $\left(R\right.$; for Q_{p} reduces to some finite field by Hansel's Lemma
- Conversely, if C has a point defined over $\mid R$ and \mathbb{R}_{p} $\forall p<\infty$, do they come from a Q-rational point (local-to-global)?
- Hasse principle! True in some cases, eeg. linear \& quadratic equations (genus 0)
- Theorem: A quadratic form $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m} a_{i} x_{i}^{2} / \mathbb{Q}$ represents O if and only if it doer so over $\mid R$ and $\mathbb{Q}_{p} \forall p$
- Non-example: $2 y^{2}=x^{4}$-17 (use Hesse's bound)
- Takeaway: Genus 1 curves are the first example of the failure of the Hose principle

2. Elliptic curves

- Definition: An elliptic curve E over \mathbb{R} is a Smooth projective curve of genus 1 with a Q-rational point \cup known as the origin. More concretely,

$$
\varepsilon: y^{2}=x^{3}+a x+b \quad a, b \in \mathbb{Q} \quad D=-16\left(4 a^{3}+27 b^{2}\right) \neq 0
$$

with 1-poict-compactification given by v. In general, weierstrass equation $\varepsilon: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$

- Examples:
(i) $y^{2}=x^{3}-x$

$$
D>0
$$

(2) $y^{2}=x^{3}+x$

(3) $y^{2}=x^{3}-3 x+3$

- Non-examples:
(1) $y^{2}=x^{3}$
(cuspidal cubic)

(2) $y^{2}=x^{3}+x^{2}$
(nodal cubic)

existence, finiteness?
- How to study the rational points of ε ? Impose an algebraic structure on them! 0

- ε becomes an abelian group!
- $\operatorname{Pic}^{\circ}(\varepsilon)=\{$ degree zero divisors on $\varepsilon\} / \sim$ $\Rightarrow \varepsilon \cong P: c^{\circ}(\varepsilon)$ under the map $P \rightarrow(P)-(v)$
- If $P, Q \in \varepsilon(\mathbb{Q})$, then $P f Q \in \varepsilon(Q)$ as well, so $\varepsilon(\mathbb{Q}) \subset \varepsilon$ is a well-defined subgroup(Mordell-Weil)

D Rank:

- Theorem (Mordell' 192乙): $\varepsilon(\mathbb{Q}$) is a finitely generated abelian group $\Rightarrow \varepsilon(Q) \cong \varepsilon(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}$ where r is called the rank of ε
- Proof relies on fundamental results in algebraic number theory:
(1) finiteness of ideal class group
(2) finite generation of units (Dirichlet's unit theorem)
(3) theory of heights
- Drawback is non-effectiveness: cannot determine r ! In fact, no known theoretical algorithm to date
- In practice, use 2-descent (mwrank in Ctr by y. Cremona)
- If algebraic methods cannot determine r, is there some other way? Yes (conjecturally): analytically via the curve's L - function!

3. L-functron

- Every elliptic curve ε / \mathbb{Q} has a (Weierstrass!) equation with integer coefficients
- Can be made minimal so that $|\Delta(\varepsilon)|$ is an integer and as small as possible
- Example:
$\varepsilon: y^{2}=x^{3}+16$ has $\Delta=-2^{12} 3^{3}$ and isn't minimal.
Substitute $x=4 x^{\prime}$ and $y=8 y^{7}+4$ to get $\varepsilon^{\prime}:\left(y^{\prime}\right)^{2}+y^{\prime}=\left(x^{\prime}\right)^{3}$ with $\Delta^{\prime}=-3^{3}$
- Given a minimal equation for ε / \mathbb{Z}, can reduce the coefficients mod p to obtain a curve/ IF
- Define now $a_{p}:=p+1-\left|\tilde{\varepsilon}\left(\mathbb{F}_{p}\right)\right|$
- The resulting curve may have bad reduction, in which case

$$
a_{p}=\left\{\begin{array}{cc}
1 & \text { split milt. } \\
-1 & \text { non-split milt. }
\end{array}\right\} \text { nodal }
$$

- Define
(1) p good: $L_{p}(\varepsilon, s)=\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1}$
(2) p bad:

$$
L_{p}(\varepsilon, s)=\left(1-a_{p} p^{-s}\right)^{-1}= \begin{cases}\left(1-p^{-s}\right)^{-1} & \text { split wilt. } \\ \left(1+p^{-s}\right)^{-1} & \text { non-split mull. } \\ 1 & \text { additive }\end{cases}
$$

- Theorem (Lase's bound): $\left|a_{p}\right| \leq 2 \sqrt{p}$, so
$L(\varepsilon, s):=\prod_{p} L_{p}(\varepsilon, s)$ converges for $\operatorname{Re}(s)>\frac{3}{2}$
as $L(\varepsilon, s) \sim \sum_{n}-s \quad$ cuspidal newform
- Modularity theorem w_{i} les 195$): \nexists f \in S_{2}\left(r_{0}(N)\right)$
s.t. $L(\varepsilon, s)=L(f, s):=\sum_{n>0} a_{n} n^{-s}$ where
$f=\sum_{n>0} a_{n} q^{n}$, so $L(\varepsilon, s)$ has an analytic continuation to all of \mathbb{C} (Hecke's integral representation $l(f, s)=\int_{0}^{\infty} f(i y) y^{s-1} d y$ as Mellin transform) and functional equation $s \ll 2-s$

4. BSD conjecture

- Relates algebraic rank of $\varepsilon(\mathbb{Q})$ to analytic properties of $l(\varepsilon, \delta)$
- Conjecture (Birch-Swinnerton-Dyer, 1960s)
(1) Rank: $r_{\text {alg }}(\varepsilon)=\operatorname{ord}_{s=1} l(\varepsilon, s):=r_{a n}(\varepsilon)$
(2) Leading coefficient: for $r=r_{a n}(\varepsilon)$

$$
\begin{aligned}
& \quad \frac{2^{(r)}(\varepsilon, 1)}{r!}=\frac{\Omega_{\varepsilon} R_{\varepsilon} \prod_{p} c_{p}\left|S_{c}(\varepsilon)\right|}{\left|\varepsilon(\mathbb{Q})_{\text {tors }}\right|^{2}} \\
& -\Omega_{\varepsilon}=\int_{\varepsilon(R)} \frac{d x}{2 y+a_{1} x+a_{3}} \rightarrow \text { period of } \varepsilon \\
& -R_{\varepsilon}=\operatorname{det}\left(\left\langle P_{i}, P_{j}\right\rangle\right) \rightarrow \text { regulator of } \varepsilon
\end{aligned}
$$

- $c_{p}=\left[\varepsilon\left(\mathbb{F}_{p}\right): \varepsilon_{0}\left(\mathbb{F}_{p}\right)\right] \rightarrow$ local Tamagava numbers measuring bad reduction, so $C_{p}=1$ for all but finitely many p
- Sha $(\varepsilon) \rightarrow$ group measuring the failure of the Hesse principle (conjecturally finite)
- Tate, 1974 :"This remarkable conjecture relates the behavior of a gunction L at a point where it is not at present known to the order of " goop sha which is not known to be finite!"
- Discovered with computer calculations at Cambridge in the 1960s
- Initial skepticism by Tassels (Birch's PhD advisor), but plenty of numerical evidence has backed it up
S. Current status
- Theorem (Crooss-Zagier, Kolyvagin, 1580s):
(1) $r_{a x}(\varepsilon)=0 \Rightarrow r_{a l_{g}}(\varepsilon)=0$
(2) $r_{a n}(\varepsilon)=1 \Rightarrow r_{\text {alg }}(\varepsilon)=1$
and in these cases both $L^{(r)}(\varepsilon, 1)$ and the giviteners of Sha are known
- Proof uses two ingredients:
(1) Kolyuagin's Euler system: $r_{a m}(\varepsilon) \leq 1 \Rightarrow r_{a l g}(\varepsilon) \leq r_{a m}(\varepsilon)$
(2) $C_{\text {ross- } 2 \text { agier formula: } r_{a n}}(\varepsilon)=1 \Rightarrow r_{a l g}(c) \geqslant 1$ by explicit construction of Heegner paints on ε

